Set Addition in Boxes and the Freiman-bilu Theorem

نویسنده

  • BEN GREEN
چکیده

Suppose that A is a subset of the box Q = Q(L1, . . . , Ld) := d ∏ i=1 {0, 1, . . . , Li − 1} with |A| = αL1 . . . Ld, where L1 > L2 > . . . > Ld > 1 are integers. We prove that if α > (d/Ld) 1/2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressions, Convex Geometry and the Freiman-bilu Theorem

We note a link between combinatorial results of Bollobás and Leader concerning sumsets in the grid, the Brunn-Minkowski theorem and a result of Freiman and Bilu concerning the structure of sets A ⊆ Z with small doubling. Our main result is the following. If ε > 0 and if A is a finite nonempty subset of a torsion-free abelian group with |A + A| 6 K|A|, then A may be covered by e O(1) progression...

متن کامل

An Introduction to Additive Combinatorics

This is a slightly expanded write-up of my three lectures at the Additive Combinatorics school. In the first lecture we introduce some of the basic material in Additive Combinatorics, and in the next two lectures we prove two of the key background results, the Freiman-Ruzsa theorem and Roth’s theorem for 3-term arithmetic progressions. Lecture I: Introductory material 1. Basic Definitions. 2. I...

متن کامل

A 9 INTEGERS 15 A ( 2015 ) DETAILED STRUCTURE FOR FREIMAN ’ S 3 k � 3 THEOREM

Let A be a set of k integers. We study Freiman’s inverse problem with small doublings and continue the work of G. A. Freiman, I. Bardaji and D. J. Grynkiewicz by characterizing the detailed structure of A in Theorem 2.2 below when the sumset A+A contains exactly 3k 3 integers. Besides some familiar structures, such a set A can have a configuration composed of “additively minimal triangles.”

متن کامل

Detailed Structure for Freiman ’ s 3 k − 3 Theorem

Let A be a set of k integers. We study Freiman’s inverse problem with small doublings and continue the work of G. A. Freiman, I. Bardaji and D. J. Grynkiewicz by characterizing the detailed structure of A in Theorem 2.2 below when the sumset A + A contains exactly 3k−3 integers. Besides some familiar structures, such a set A can have a configuration composed of “additively minimal triangles.”

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005